Math

Grade 4

Prepared by:

Jenna Abballe

Superintendent of Schools:

Marie C. Cirasella, Ed.D.

Approved by the Midland Park Board of Education on

August 23, 2022

Born on May 2017
Revised June 2019
Revised March 2020
Revised August 22, 2022

Math Grade 4

Course Description:

The grade 4 mathematics curriculum will be taught utilizing the Concrete Pictorial Abstract model of instruction. Starting with Concrete, students will utilize manipulatives for hands-on learning. Next with Pictorial, students will represent concepts visually using models. Lastly, students will utilize numbers and symbols to solidify their understanding of the concept. The curriculum is aligned with the New Jersey Student Learning Standards. Those standards focus on the following areas: place value, multiplication, division, fractions, and decimals.

The curriculum begins with place value where the students will expand on their understanding through the millions. Next, comes multiplication and division where the students will develop understanding with multi-digit multiplication and division to find quotients involving multi-digit dividends. The next in the curriculum is fractions and it ends with decimals. The students will develop an understanding of addition and subtraction of fractions with like denominators and multiplication of fractions by whole numbers. The calendar math unit will go throughout the year with each month focusing on the geometry and measurement and data standards. The students will understand that geometric figures can be analyzed and classified based on their attributes.

Course Sequence:

Unit Title	
Unit 1: Place Value	29 days
Unit 2: Multiplication	41 days
Unit 3: Division	31 days
Unit 4: Fractions	40 days
Unit 5: Decimals	16 days
Unit 6: Calendar Math	Full year
State Testing, SGO, Re-Teach, Field Trips, Assemblies, etc.	26 days

Pre-requisite:

Grade 3 Math

UNIT \#1

Overview

Content Area: Math

Unit Title: Place Value
Grade Level(s): 4
Core Ideas: Students will be able to generalize their understanding of place value through $1,000,000$. There will be an understanding of the relative sizes of numbers in each place value to recognize that a digit in one place represents ten times what it represents in the place to its right. Students will be able to use their general understanding of place value to read and write multi-digit numbers in standard, written, expanded form as well as expanded notation. Finally, students will use place value understanding and properties of operations to perform multi-digit arithmetic such as addition and subtraction.

Standards (Content and Technology)		
CPI\#:	Statement:	Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division
Performance Expectations (NJSLS		

- How can you compare and order numbers?
add and subtract whole numbers. Estimation will
- How can you round numbers?
- How can you estimate an answer?
- How can you rename a whole number?
- How can you add or subtract whole numbers?

Evidence of Learning

Formative Assessments: Entrance and exit slips, individual dry erase boards practice, small group work, homework collection, participation, and teacher observation.
Summative/Benchmark Assessment(s): Quizzes throughout the unit and end of unit test.
Alternative Assessments: Modified versions of formative and summative assessments and project-based assessments.

Resources/Materials: \quad Key Vocabulary:

- Curriculum binders and calendars
- math textbook
- SMART board
- document camera
- online resources (i.e. Reflex math, Xtra Math, IXL, Think Central)
- math manipulatives such as base ten blocks.
be used to check the reasonableness of an answer.
- place value
- period
- value
- standard form
- word form
- expanded form
- expanded notation
- rounding
- sum
- difference
- estimate

Suggested Pacing Guide

Lesson Name/Topic	Student Learning Objective(s)	Suggested Tasks/Activities:	Day(s) to Complete
Place Value	Students will be able to - Read and write whole numbers through the millions. - Demonstrate understanding of a digit in one place represents ten times what it represents in the place to its right. - Read and write numbers using standard form, word form, expanded form, and expanded notation. - Decompose and rename whole numbers.	- Model place value using base-ten blocks - Guided notes introducing new vocabulary - Analyze number line and the powers of ten - Guided notes on standard, word, form, expanded, form, \& expanded notation - Digital sort on place value forms - Guided \& independent practice reading and writing numbers in different forms - Insert Brain Pop videos on place value - Digital task cards - Formative Assessment	11 days
Compare and Order	Students will be able to compare and order whole numbers using <, >, or $=$ symbols.	- Review place value chart and the understanding the digit in one place represents ten times what it represents in the place to its right - Model comparing whole numbers using place value and base-ten blocks - Brain Pop video on comparing whole numbers	2 days

		- Guided and Independent practice comparing whole numbers - Digital task cards	
Rounding	Students will be able to round multi-digit whole numbers to any place.	- Model rounding whole numbers using base-ten blocks - Flocabulary Video on Rounding - Guided notes on rounding - Guided \& independent practice rounding whole numbers to any place value - Digital task cards	2 days
Add and Subtract	Students will be able to - Add and subtract multi-digit whole numbers. - Utilize addition and subtraction skills to solve word problems.	- Review adding and subtracting multi-digit numbers with and without regrouping - Math Antics Video - Guided \& Independent practice adding and subtracting multi-digit whole numbers with and without regrouping - Digital task cards - Model "BLS" strategy for word problems - Create a running addition and subtraction key word list in student notebooks - Guided \& independent practice solving addition and subtraction word problems	6 days
Quiz	Students will be able to add and subtract multi-digit whole numbers.	- Review Game - Formative Assessment	2 days
Unit 1 Test	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Summative Assessment	2 days
Build a Million	Students will be able to create a model of 1 million.	- Create "One in a Million" Project	4 days
Additional Resources: The read aloud "How Much is a Million?" by David M. Schwartz and base-ten blocks for rounding.			
Differentiation/Modification Strategies			
Students with Disabilities English Language Learners			
- Consult student IEP - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word Consult with Case Managers and follow IEP		- Consult student ELL Plan - Assign a buddy, same language or English speaking - Allow errors in speaking - Rephrase questions, directions, and explanations - Allow extended time to answer questions - Accept participation at any level, even one word	
Gifted \& Talented Students		Students at Risk	

- Consult with G and T teacher - Provide extension activities - Make peer leaders - Build on students' intrinsic motivations - Consult with parents to accommodate students' interests in completing tasks at their level of engagement	- Consult with I \&RS as needed - Provide extended time to complete tasks - Consult with Guidance Counselors and follow I\&RS procedures/action plans - Consult with classroom teacher(s) for specific behavior interventions - Provide rewards as necessary
504 Students	Other:
- Consult 504 Plan - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word - Consult with Case Managers and follow 504	

UNIT \#2

Overview

Content Area: Math

Unit Title: Multiplication

Grade Level(s): 4
Core Ideas: Students will apply their understandings of models of multiplication, place value, and properties of operations to compute products of multi-digit whole numbers. Students will accurately apply appropriate methods to estimate or mentally calculate products. They will develop a fluency with procedures for multiplying whole numbers such as using area model, partial products, or the traditional method and will be able to explain why the procedures work based on place value and properties of operations. Students will then be able to take these procedures and apply their understanding to solve multi-step word problems. Students will be able to gain familiarity with factors and multiples to generate and analyze patterns. Finally, students will be able to use their knowledge of multiplication to solve for the area and perimeter of rectangles.

Standards (Content and Technology)	
CPI\#:	Statement:
Performance Expectations (NJSLS)	
4.OA.A. 1	Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.
4.OA.A. 2	Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.
4.OA.A. 3	Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
4.OA.B. 4	Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.
4.NBT.B. 5	Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
4.MD.A. 3	Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.
SMP. 1	Make sense of problems and persevere in solving them.
SMP. 2	Reason abstractly and quantitatively.
SMP. 3	Construct viable arguments and critique the reasoning of others.
SMP. 4	Model with mathematics.
SMP. 5	Use appropriate tools strategically.
SMP. 6	Attend to precision.
SMP. 7	Look for and make use of structure.
SMP. 8	Look for and express regularity in repeated reasoning.
Career Readiness (9.2) Life Literacies, and Key Skills (standard 9.1, 9.4)	
9.2.5.CAP. 1	Evaluate personal likes and dislikes and identify careers that might be suited to personal likes.
9.2.5.CAP. 2	Identify how you might like to earn an income.
9.1.5.FP. 3	Analyze how spending choices and decision-making can result in positive or negative consequences.
9.4.5.CT.1	Identify and gather relevant data that will aid in the problem-solving process
9.4.5.CT. 4	Apply critical thinking and problem-solving strategies to different types of problems such as personal, academic, community and global.
9.4.5.CT. 4	Apply critical thinking and problem-solving strategies to different types of problems such as personal, academic, community and global (e.g., 6.1.5.CivicsCM.3).
9.4.5.DC. 4	Model safe, legal, and ethical behavior when using online or offline technology (e.g., 8.1.5.NI.2)

Computer Science and Design Thinking (standard 8)

8.2.5.ED.2	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.
Interdisciplinary Connection	
NJSLSA.SL1	Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others' ideas and expressing their own clearly and persuasively.
NJSLSA.SL4	Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience.
W.4.4	Produce clear and coherent writing in which the development and organization are appropriate to task, purpose, and audience.
Cross-cultural Statements/Mandates (Amistad, Holocaust, LGBT/Disabilities, SEL, etc...)	
Amistad: References to this mandate are made by studying John Urschel, an African American who retired from the NFL at age 26 for a chance at a PhD in mathematics at MIT. As John Urschel most famously quoted, "Being capable of thinking quantitatively - it's the single most important thing."	

Unit Essential Question(s):

- How are factors and multiples related?
- How can you tell whether a number is prime or composite?
- How can you model multiplication comparisons?
- How does understanding place value help you multiply tens, hundreds, and thousands?
- How can you estimate products by rounding and determine if exact answers are reasonable?
- How can you use mental math and properties to help you multiply numbers?
- How can you multiply by a 1 -digit number using area model, partial products, and traditional methods?
- How can you multiply by a 2 -digit number using area model, partial products, and traditional methods?
- How can you use formulas to find the perimeter and area of a rectangle?
- How can you find the area of composite figures?
- How can you find the missing dimension of a rectangle when given the perimeter or area?

Unit Enduring Understandings:

- Students will use their knowledge of place value and basic fact fluency to solve problems involving tens, hundreds, and thousands. They will use rounding to estimate the reasonableness of an exact answer. When solving multi-digit multiplication problems, the students will explore different strategies to aid in their understanding. They will make use of structure to solve for perimeter and area and extend their knowledge to find missing dimensions and the area of composite figures.

Evidence of Learning

Formative Assessments: Entrance and exit slips, individual dry erase boards practice, small group work, homework collection, multiplication flashcards, participation, and teacher observation.
Summative/Benchmark Assessment(s): Quizzes throughout the unit and end of unit test.
Alternative Assessments: Modified versions of formative and summative assessments and project-based assessments.

Resources/Materials:

- Curriculum binders and calendars
- math textbook
- SMART board
- document camera
- online resources (i.e. Reflex math, Xtra Math, IXL, Think Central)
- math manipulatives such as counters, cubes, and toothpicks.

Key Vocabulary:

- factor
- product
- multiple
- array
- commutative property of multiplication
- associative property of multiplication
- identity property of multiplication
- zero property of multiplication
- estimate

Introduction	Students will be able to - Relate multiplication equations and comparison statements - Model and represent the concept of multiplication in three ways - List the multiples and factors of a given number	- Model multiplication comparisons using the bar model - Guided \& independent practice writing multiplication equations using the bar model - Introduce new multiplication vocabulary - Model representing multiplication in three ways - Represent Multiplication Chart/Sort - Guided Notes on multiples and factors - Guided \& independent practice finding multiples and factors of whole numbers	3 days
Properties	Students will be able to identify the properties of multiplication.	- Guided notes on properties of multiplication (flip book) - Digital properties sort - Guided \& independent practice identifying and creating properties of multiplication	3 days
Estimation	Students will be able to - Multiply by tens, hundreds, and thousands - Estimate products to determine reasonableness of answer	- Review base ten pattern in the place value chart - Review multiplication properties - Model using properties to show the relationship between place value and multiplication - Guided \& independent practice multiplying by tens, hundreds, thousands - Gallery walk scavenger hunt - Online digital mystery picture - Model estimating products using rounding and place value - Guided \& independent practice estimating products - Gallery walk	3 days
Review and Quiz	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Formative Assessment	2 days
Multiplication	Students will be able to multiply twodigit numbers by one-digit numbers, three-digit numbers by one-digit numbers, and two-digit numbers by twodigit numbers using the area model, partial products, and traditional methods.	- Model multiplying whole numbers using area model, partial products, and traditional. Provide students with notes for each model - Guided \& independent practice multiplying whole numbers	10 days

		- Multiplication gallery walk - Multiplication puzzles	
Multiplication	Students will be able to solve multiplication word problems using the area model, partial products, and traditional methods.	- Review BLS strategy - Review word problem types (too much information, not enough information, hidden questions) - Create list of multiplication key words and phrases - Guided \& independent practice solving multiplication word problems	3 days
Review and Quiz	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Formative Assessment	2 days
Arrays	Students will be able to create all possible arrays for the numbers 1-20.	- Model arrays using square tiles, students will transfer all arrays to graph paper 120 - Start analyzing which numbers have only two arrays and which numbers have more than two arrays	4 days
Prime and Composite	Students will be able to identify prime and composite numbers from 1 to 100 .	- Introduce concept of prime and composite numbers - Guided notes on prime and composite numbers - Have students identify prime and composite numbers from 1 to 100 using a hundreds chart - Play "Buzz"	2 days
Perimeter and Area	Students will be able to - Solve for the perimeter and area of rectangles and squares - Solve for the perimeter and area of irregular figures - Utilize area and perimeter to solve for a missing dimension - Utilize area and perimeter to solve real-world application problems	- Review Area \& Perimeter - Guided notes on area \& perimeter - Flocabulary video on area \& perimeter - Guided \& independent practice finding area and perimeter of shapes. - Review BLS - Guided \& independent practice utilizing area and perimeter in real-world application problems - "Dream Home" Project	7 days
Review and Quiz	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Summative Assessment	2 days

Teacher Notes: Use cubes to model groups of things. Make arrays for the numbers 1-20. When teaching multi-digit multiplication, teach area model first, then partial products, and traditional last. Utilize toothpicks to model perimeter of a rectangle. Read aloud book for area and perimeter.
Additional Resources: Cubes, counters, chart paper, and toothpicks. Read aloud book "Spaghetti and Meatballs for All!" by Marilyn Burns.

Differentiation/Modification Strategies

- Consult student IEP - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word Consult with Case Managers and follow IEP	- Consult student ELL Plan - Assign a buddy, same language or English speaking - Allow errors in speaking - Rephrase questions, directions, and explanations - Allow extended time to answer questions - Accept participation at any level, even one word
Gifted \& Talented Students	Students at Risk
- Consult with G and T teacher - Provide extension activities - Make peer leaders - Build on students' intrinsic motivations - Consult with parents to accommodate students' interests in completing tasks at their level of engagement	- Consult with I \&RS as needed - Provide extended time to complete tasks - Consult with Guidance Counselors and follow I\&RS procedures/action plans - Consult with classroom teacher(s) for specific behavior interventions - Provide rewards as necessary
504 Students	Other:
- Consult 504 Plan - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word - Consult with Case Managers and follow 504	

UNIT \#3

Overview

Content Area: Math

Unit Title: Division

Grade Level(s): 4
Core Ideas: Students will be able to apply their understanding of models for division, place value, and properties of operations, as well as the relationship between multiplication and division as they use procedures to find quotients with multi-digit dividends. They will accurately apply appropriate methods to estimate and mentally calculate quotients and will interpret remainders based upon the context of a word problem.

Standards (Content and Technology)		
CPI\#:	Statement:	
Performance Expectations (NJSLS)		
4.NBT.B. 6	Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	
SMP. 1	Make sense of problems and persevere in solving them.	
SMP. 2	Reason abstractly and quantitatively.	
SMP. 3	Construct viable arguments and critique the reasoning of others.	
SMP. 4	Model with mathematics.	
SMP. 5	Use appropriate tools strategically.	
SMP. 6	Attend to precision.	
SMP. 7	Look for and make use of structure.	
SMP. 8	Look for and express regularity in repeated reasoning.	
Career Readiness (9.2) Life Literacies, and Key Skills (standard 9.1, 9.4)		
9.2.5.CAP. 1	Evaluate personal likes and dislikes and identify careers that might be suited to personal likes.	
9.2.5.CAP. 2	Identify how you might like to earn an income.	
9.1.5.FP. 3	Analyze how spending choices and decision-making can result in positive or negative consequences.	
9.4.5.CT. 1	Identify and gather relevant data that will aid in the problem-solving process	
9.4.5.CT. 4	Apply critical thinking and problem-solving strategies to different types of problems such as personal, academic, community and global.	
9.4.5.CT. 4	Apply critical thinking and problem-solving strategies to different types of problems such as personal, academic, community and global (e.g., 6.1.5.CivicsCM.3).	
9.4.5.DC. 4	Model safe, legal, and ethical behavior when using online or offline technology (e.g., 8.1.5.NI.2)	
Computer Science and Design Thinking (standard 8)		
8.2.5.ED. 2	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.	
9.4.5.TL. 1	Compare the common uses of at least two different digital tools and identify the advantages and disadvantages of using each.	
Interdisciplinary Connection		
NJSLSA.SL1	Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others' ideas and expressing their own clearly and persuasively.	
NJSLSA.SL4	Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience.	
W.4.4	Produce clear and coherent writing in which the development and organization are appropriate to task, purpose, and audience.	
Cross-cultural Statements/Mandates (Amistad, Holocaust, LGBT/Disabilities, SEL, etc...)		
Holocaust Mandate: References to this mandate are made by studying Alan Turing. Turing helped the British and its allies win the Second World War by interpreting the Nazi code correctly using patterns and algebra.		
Unit Essentia - How anothe - How model	Question(s): you tell whether one number is a factor of number? you use fair share and equal groups to vision?	Unit Enduring Understandings: - Students will attend to precision when dividing multi-digit dividends by 1 -digit divisors. They will also understand what remainders represent

- How can you divide numbers through the thousands by whole numbers to ten?
- How can you use multiples and compatible numbers to estimate quotients?
- How can you use models to divide whole numbers that do not divide evenly?
- How can you use remainders in division problems?
- How can you use tower up and traditional methods to divide multi-digit dividends by 1 -digit divisors?
and how to interpret them in order to give
accurate solutions to problems.

Evidence of Learning

Formative Assessments: Entrance and exit slips, individual dry erase boards practice, small group work, homework collection, multiplication flashcards, participation, and teacher observation.
Summative/Benchmark Assessment(s): Quizzes throughout the unit and end of unit test.
Alternative Assessments: Modified versions of formative and summative assessments and project-based assessments.

Resources/Materials:

- Curriculum binders and calendars
- math textbook
- SMART board
- document camera
- online resources (i.e. Reflex math, Xtra Math, IXL, Think Central)
- math manipulatives such as base ten blocks

Key Vocabulary:

- divide
- dividend
- divisor
- quotient
- remainder
- estimate
- divisibility

Suggested Pacing Guide

Lesson Name/Topic	Student Learning Objective(s)	Suggested Tasks/Activities:	Day(s) to Complete
Divisibility	Students will be able to utilize divisibility rules to determine which numbers a given number is divisible by	- Guided notes on divisibility rules - Guided \& independent practice finding if a number is divisible by $2,3,5,6,9$, \& 10 - Model creating numbers divisible by specific numbers, but not other numbers	3 days
Introduction	Students will be able to - Model and represent division as fair share and equal groups - Identify the different formats of division	- Introduce new division vocabulary - Model the three different formats of division - Model division as fair sharing, equal groups, and repeated subtraction - Division form digital exit ticket	3 days
Remainders	Students will be able to - Utilize models to divide whole numbers that do not divide evenly - Solve word problems and interpret the remainders based upon the context of the problem	- Review Remainders and how to find remainders with basic facts and counters - Brain Pop video - Remainders Gallery Walk - Provide students with notes on interpreting remainders - Guided \& independent practice solving word problems using the four	5 days

		interpreting remainders strategies - Interpreting remainders task cards - Interpreting remainders exit ticket	
Estimation	Students will be able to - Divide tens, hundreds, and thousands by whole numbers from 1-10 - Estimate quotients using multiples and compatible numbers	- Review base ten pattern in the place value chart - Model dividing by tens, hundreds, thousands using "dancing zeros" - Guided \& independent practice dividing by tens, hundreds, thousands - Model estimating quotients using compatible numbers - Guided \& independent practice estimating quotients	4 days
Review and Quiz	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Formative Assessment	3 days
Division	Students will be able to divide three-digit and four-digit dividends by one-digit divisors using the tower up and traditional long division methods.	Model long division and provide students with guided notes for both tower up and traditional - Math Antics Video - Guided \& independent practice with long division - Long Division Escape Room - Long Division Error Analysis Task cards - Tic-Tac-Quo Game Moving Remainders Game	7 days
Division	Students will be able to solve division word problems using the tower up and traditional long division methods.	- Review BLS strategy - Model solving long division word problems - Create running list with division key words and phrases - Guided \& independent practice solving long division word problems	3 days
Review and Quiz	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Summative Assessment	3 days
Teacher Notes: Teach tower up and traditional long division methods for division.			
Additional Resources: Read aloud book "A Remainder of One" by Elinor J. Pinczes. Read aloud book "Divide and Ride" by Stuart J. Murphy. Base-ten blocks to model tower up.			
Differentiation/Modification Strategies			
Students with Disabilities		English Language Learners	
- Consult student IEP - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word		- Consult student ELL Plan - Assign a buddy, same language or English speaking - Allow errors in speaking - Rephrase questions, directions, and explanations - Allow extended time to answer questions - Accept participation at any level, even one word	

Consult with Case Managers and follow IEP	
Gifted \& Talented Students	Students at Risk
- Consult with G and T teacher - Provide extension activities - Make peer leaders - Build on students' intrinsic motivations - Consult with parents to accommodate students' interests in completing tasks at their level of engagement	- Consult with I \&RS as needed - Provide extended time to complete tasks - Consult with Guidance Counselors and follow I\&RS procedures/action plans - Consult with classroom teacher(s) for specific behavior interventions - Provide rewards as necessary
504 Students	Other:
- Consult 504 Plan - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word - Consult with Case Managers and follow 504	

UNIT \#4

Overview

Content Area: Math

Unit Title: Fractions

Grade Level(s): 4
Core Ideas: Students will develop an understanding of fraction equivalence and operations with fractions. Students will recognize that two different fractions can be equal and they will develop methods for generating and recognizing equivalent fractions through visual fraction models and algorithms. Students will extend previous understandings to compare two fractions with different numerators and denominators using strategies such as benchmarking to $1 / 2$ and creating common denominators and numerators. Students will understand addition and subtraction of fractions with common denominators. Finally, students will use their understanding of fractions and their understanding of multiplication to multiply a fraction by a whole number.

Standards (Content and Technology)	
CPI\#:	Statement:
Performance Expectations (NJSLS)	
4.NF.A. 1	Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions.
4.NF.A. 2	Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.
4.NF.B.3a	Understand addition and subtraction of fractions as joining and separating parts referring to the same whole.
4.NF.B.3b	Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=8 / 8+8 / 8+1 / 8$.
4.NF.B.3c	Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction.
4.NF.B.3d	Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.
4.NF.B.4a	Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent $5 / 4$ as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.
4.NF.B.4b	Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$, recognizing this product as $6 / 5$. (In general, $n \times(a / b)=(n \times a) / b$.)
4.NF.B.4c	Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
4.NF.C. 5	Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and $100 .{ }^{4}$ For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$.
4.MD.B. 4	Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4,1 / 8$). Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.
SMP. 1	Make sense of problems and persevere in solving them.
SMP. 2	Reason abstractly and quantitatively.
SMP. 3	Construct viable arguments and critique the reasoning of others.
SMP. 4	Model with mathematics.
SMP. 5	Use appropriate tools strategically.
SMP. 6	Attend to precision.

SMP. 7	Look for and make use of structure.	
SMP	Look for and express regularity in repeated reasoning.	
Career Readiness (9.2) Life Literacies, and Key Skills (standard 9.1, 9.4)		
9.2.5.CAP. 1	Evaluate personal likes and dislikes and identify careers that might be suited to personal likes	
9.2.5.CAP. 2	Identify how you might like to earn an income	
9.4.5.CT. 4	Apply critical thinking and problem-solving strategies to different types of problems such as personal, academic, community and global	
9.4.5.CT. 4	Apply critical thinking and problem-solving strategies to different types of problems such as personal, academic, community and global (e.g., 6.1.5.CivicsCM.3).	
9.4.5.DC. 4	Model safe, legal, and ethical behavior when using online or offline technology (e.g., 8.1.5.NI.2)	
9.1.5.FI. 1	Identify various types of financial institutions and the services they offer including banks, credit unions, and credit card companies	
Technology Literacy/Computer Science and Design Thinking (standard 8)		
8.1.5.DA. 1	Collect, organize, and display data in order to highlight relationships or support a claim.	
8.1.5.DA. 3	Organize and present collected data visually to communicate insights gained from different views of the data.	
Interdisciplinary Connection		
NJSLSA.SL1	Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others' ideas and expressing their own clearly and persuasively.	
NJSLSA.SL4	Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience.	
W.4.4	Produce clear and coherent writing in which the development and organization are appropriate to task, purpose, and audience.	
Cross-cultural Statements/Mandates (Amistad, Holocaust, LGBT/Disabilities, SEL, etc...)		
LGBTQ+ Mandate: References to this mandate are made by studying Autumn Kent a pansexual trans woman professor of mathematics at the university of Wisconsin, who in 2019 organized the LGTBQ+ conference to foster collaboration between LGBTQ+ mathematicians working in geometry, topology, and dynamical systems.		
Unit Essential Question(s): - How can you use models to show equivalent fractions? - How can you write a fraction as an equivalent fraction in simplest form? - How can you compare fractions with common denominators or common numerators? - How can you use benchmarks to compare fractions? - How can you write a pair of fractions as fractions with common denominators? - How can you order fractions? - When can you add or subtract parts of a whole? - How can you write a fraction as a sum of fractions with the same denominator? - How can you add and subtract fractions with like denominators using models? - How can you rename mixed numbers as fractions greater than 1 and rename fractions greater than 1 as a mixed number? - How can you add and subtract mixed numbers with like denominators? - How can you rename a mixed number to help you subtract? - Can you write a fraction as a product of a whole number and a unit fraction?		Unit Enduring Understandings: - Students will use visual models and algorithms to find equivalent fractions. They will learn to reason about fractions by understanding the size of the fraction piece to compare and order fractions. Students will reason about fractions to compute addition and subtraction problems of fractions and mixed numbers. Students will create area representations and number lines to understand multiplying a whole number by a fraction.

- How can you write a product of a whole number and a fraction as a product of a whole number and unit fraction?
- How can you use a model to multiply a fraction by a whole number?
- How can you make and interpret line plots with fractional data?

Evidence of Learning

Formative Assessments: Entrance and exit slips, individual dry erase boards practice, small group work, homework collection, multiplication flashcards, participation, and teacher observation.
Summative/Benchmark Assessment(s): Quizzes throughout the unit and end of unit test.
Alternative Assessments: Modified versions of formative and summative assessments and project-based assessments.

Resources/Materials:

- Curriculum binders and calendars
- math textbook
- SMART board
- document camera
- online resources (i.e. Reflex math, Xtra Math, IXL, Think Central)
- math manipulatives such as cubes, fraction strips, pattern blocks, and fraction tiles.

Key Vocabulary:

- fraction
- numerator
- denominator
- proper fraction
- unit fraction
- improper fraction
- mixed number
- simplify / lowest terms

Suggested Pacing Guide

Lesson Name/Topic	Student Learning Objective(s)	Suggested Tasks/Activities:	Day(s) to Complete
Introduction	Students will be able to model fractions of a whole and model one whole when given a fraction.	- Introduce fraction vocabulary - Vocabulary digital sort - Fraction Flocabulary Video - Model finding fraction of a whole and one whole when given a fraction using katie cubes - Guided \& independent practice using katie cubes	2 days
Number Line	Students will be able to locate fractions on a number line.	- Model locating fractions on a number line. - "Don't commit a fraction crime, count the spaces not the lines" - Mary's number line packet (part 1)	2 days
Equivalent Fractions	Students will be able to - Model that equivalent fractions have the same location on the number line - Model that equivalent fractions cover the same fractional area of the whole	- Guided notes on equivalent fractions - Equivalent fractions Brain Pop - Create number lines with students using fraction strips to find equivalent fractions (highlight equivalent fractions) - Create pattern block reference card - Model finding equivalent fractions by covering the same whole using pattern	5 days

		blocks (building to higher terms \& simplifying to lower terms) - Model finding equivalent fractions algorithmically - Equivalent fraction escape room - Equivalent fraction digital mystery picture	
Review and Quiz	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Formative Assessment	2 days
Compare	Students will be able to - Compare fractions with common denominators - Compare fractions with common numerators - Compare fractions by utilizing benchmark to one-half strategy - Compare fractions by finding either a common denominator or common numerator	- Model comparing fractions using common denominators using manipulatives such as fraction tiles, pattern blocks, and number lines. - Guided notes on common denominators - Online task cards on common denominators - Model comparing fractions using common numerators using manipulatives such as fraction tiles, pattern, blocks, and number lines - Guided notes on common numerators - Online task cards on common numerators - Fill out benchmark to $1 / 2$ chart with students - Model comparing fractions by benchmarking to $1 / 2$ - Benchmark fraction sort - Model comparing fractions by finding a common denominator/numerator by creating equivalent fractions - Comparing fractions gallery walk	7 days
Simplify	Students will be able to simplify fractions to lowest term.	- Model simplifying fractions using the algorithm - Guided notes with finding the greatest common factor - Guided \& independent practice simplifying fractions	2 days
Review and Quiz	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Formative Assessment	2 days
Types of Fractions	Students will be able to - Identify improper fractions and mixed numbers - Convert between improper fractions and mixed numbers	- Review fraction vocabulary - Model converting between improper fractions and mixed numbers using pattern blocks - Guided notes (algorithmic)	2 days

		- Guided \& independent practice - Mixed Number \& Improper fraction puzzle	
Add and Subtract	Students will be able to - Add and subtraction fractions with common denominators - Solve word problems by adding and subtracting fractions with common denominators - Analogy of bank being a lender of money which student will 'borrow' value when subtracting.	- Model adding fractions with common denominators using fraction tiles and algorithmically (proper fractions \& mixed numbers) - Model subtracting fractions using fraction tiles and algorithmically (proper fractions \& mixed numbers) - Model "going to the bank" when subtracting fractions that require regrouping - Math Antics Video - Guided \& independent practice - Adding \& Subtracting fractions BINGO - Model and practice solving word problems with adding \& subtracting fractions - Review addition \& subtraction key words/phrases - Guided \& independent practice adding \& subtracting fractions within word problems	8 days
Multiplication	Students will be able to - Multiply whole numbers and fractions - Solve word problems by multiplying whole numbers and fractions	- Model multiplying a fraction by a whole number using fraction tiles and algorithmically - Guided \& independent practice - Multiplying fractions scavenger hunt - Multiplying Madness Board Game	3 days
Review and Quiz	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Summative Assessment	2 days
Line Plots	Students will be able to interpret and create line plots with fractional data.	- Introduce Line Plots (vocabulary) - Guided Notes with Line Plots and whole numbers. "Our Favorite Number" - Guided \& independent practice reading and interpreting line plots with and without fractions - Line Plots exit ticket	3 days

Teacher Notes: Utilize the cubes for the introduction and fraction strips to teach that equivalent fractions have the same location on the number line. Create a reference card and use pattern blocks to teach that equivalent fractions cover the same fractional area. Utilize fraction tiles to teach comparing fractions.

Additional Resources: Read aloud book "Jump, Kangaroo, Jump!" by Stuart J. Murphy. Cubes, fraction strips, pattern blocks, and fraction tiles. EAI Education Virtual Fraction Tiles for the SMART board and EAI Education Virtual Pattern Blocks for the SMART board.

Differentiation/Modification Strategies

Students with Disabilities	English Language Learners
- Consult student IEP - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word Consult with Case Managers and follow IEP	- Consult student ELL Plan - Assign a buddy, same language or English speaking - Allow errors in speaking - Rephrase questions, directions, and explanations - Allow extended time to answer questions - Accept participation at any level, even one word
Gifted \& Talented Students	Students at Risk
- Consult with G and T teacher - Provide extension activities - Make peer leaders - Build on students' intrinsic motivations - Consult with parents to accommodate students' interests in completing tasks at their level of engagement	- Consult with I \&RS as needed - Provide extended time to complete tasks - Consult with Guidance Counselors and follow I\&RS procedures/action plans - Consult with classroom teacher(s) for specific behavior interventions - Provide rewards as necessary
504 Students	Other:
- Consult 504 Plan - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word - Consult with Case Managers and follow 504	

Overview

Content Area: Math

Unit Title: Decimals

Grade Level(s): 4
Core Ideas: Students will understand decimal place value to the hundredths place and will be able to use decimal notation for fractions with denominators of 10 or 100 to write a fraction as a decimal. Students will also be able to understand decimal notation to compare decimals to the hundredths place by reasoning about their size. Finally, students will be able to add and subtract decimal in regard to word problems involving distances, liquid volume, masses of objects, and money.

Standards (Content and Technology)

CPI\#: \quad Statement:

Performance Expectations (NJSLS)

4.NF.C. 6	Use decimal notation for fractions with denominators 10 or 100 . For example, rewrite 0.62 as $62 / 100$; describe a length as 0.62 meters; locate 0.62 on a number line diagram.
4.NF.C. 7	Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.
4.MD.A. 2	Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
SMP. 1	Make sense of problems and persevere in solving them.
SMP. 2	Reason abstractly and quantitatively.
SMP. 3	Construct viable arguments and critique the reasoning of others.
SMP. 4	Model with mathematics.
SMP. 5	Use appropriate tools strategically.
SMP. 6	Attend to precision.
SMP. 7	Look for and make use of structure.
SMP. 8	Look for and express regularity in repeated reasoning.

Career Readiness (9.2) Life Literacies, and Key Skills (standard 9.1, 9.4)
9.2.5.CAP.1 \quad Evaluate personal likes and dislikes and identify careers that might be suited to personal likes.
9.2.5.CAP. 2 Identify how you might like to earn an income.
9.1.5.EG. 3 Explain the impact of the economic system on one's personal financial goals.
9.1.5. EG. 4 Describe how an individual's financial decisions affect society and contribute to the overall economy.
9.1.5.FP. 3 Analyze how spending choices and decision-making can result in positive or negative consequences.
9.4.5.CT. $4 ~ A p p l y ~ c r i t i c a l ~ t h i n k i n g ~ a n d ~ p r o b l e m-s o l v i n g ~ s t r a t e g i e s ~ t o ~ d i f f e r e n t ~ t y p e s ~ o f ~ p r o b l e m s ~ s u c h ~ a s ~ p e r s o n a l, ~$ academic, community and global
Computer Science and Design Thinking (standard 8)
9.4.5.TL. 3 Format a document using a word processing application to enhance text, change page formatting, and include appropriate images graphics, or symbols.
8.2.5.ED. $2 \quad$ Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.
Interdisciplinary Connection
NJSLSA.SL1 \quad Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others' ideas and expressing their own clearly and persuasively.
NJSLSA.SL4 \quad Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience.
W.4.4 Produce clear and coherent writing in which the development and organization are appropriate to task, purpose, and audience.
Cross-cultural Statements/Mandates (Amistad, Holocaust, LGBT/Disabilities, SEL, etc...)
Disabilities Mandate: References to this mandate are made by studying Solomon Lefschetz, an amputee and mathematician who did fundamental work on algebraic topology and its applications to algebraic geometry as well as the theory of non-linear ordinary differential equations.

- How can you record tenths and hundredths as fractions and decimals?
- How can you relate fractions, decimals, and money?
- How can you add fractions when the denominators are 10 or 100 ?
- How can you compare decimals?
- How can you order decimals?
- How can you add and subtract decimals?
- Students will interpret and represent decimals fractions with denominators of 10 and 100. They will utilize visuals and number lines to build relationships between decimals and their corresponding fractions.

Evidence of Learning

Formative Assessments: Entrance and exit slips, individual dry erase boards practice, small group work, homework collection, multiplication flashcards, participation, and teacher observation.
Summative/Benchmark Assessment(s): Quizzes throughout the unit and end of unit test.
Alternative Assessments: Modified versions of formative and summative assessments and project-based assessments.

Resources/Materials:

- Curriculum binders and calendars
- math textbook
- SMART board
- document camera
- online resources (i.e. Reflex math, Xtra Math, IXL, Think Central)
- math manipulatives such as base ten blocks

Key Vocabulary:

- decimal
- tenths
- hundredths
- standard form
- expanded form
- equivalent decimals

Suggested Pacing Guide			
$\begin{aligned} & \hline \text { Lesson } \\ & \text { Name/Topic } \\ & \hline \end{aligned}$	Student Learning Objective(s)	Suggested Tasks/Activities:	Day(s) to Complete
Decimals and Fractions	Students will be able to record tenths and hundredths as fractions and decimals.	- Model decimal place value using base-ten blocks, tenths chart, and a hundredths chart - Guided notes on decimal vocabulary - Review decimal place value in standard, written, and expanded form - Digital task cards modeling decimals - Digital task cards reading/writing decimals in different forms - Decimal Model Matching Game - Decimal place value BINGO	3 days
Add Fractions	Students will be able to add fractions with denominators of 10 and 100 .	- Model converting decimals/fractions between tenths and hundredths to add - Guided \& independent adding fractions with denominators of 10 \& 100	2 days
Compare	Students will be able to compare decimals to the hundredths place.	- Review decimal place value - Model comparing decimals based on place value - Online task cards	2 days
Number Line	Students will be able to locate decimals on a number line.	- Review fractions on a number line - Model decimals on a number line	3 days

		- Guided \& independent practice identifying and locating decimals on a number line - Gallery Walk	
Add and Subtract	Students will be able to - Add and subtract decimals - Solve word problems by adding and subtracting decimals.	- Model adding and subtracting decimals by lining up place values - Guided \& independent practice adding and subtracting decimals - "Our Classroom Diner" Project - Review BLS and addition/subtraction key words/phrases - Guided \& independent practice solving addition and subtraction word problems	3 days
Review and Quiz	Students will be able to demonstrate knowledge of the above objectives.	- Review Game - Summative Assessment	3 days

Teacher Notes: Utilize base-ten blocks to model tenths and hundredths.
Additional Resources: Base-ten blocks

Differentiation/Modification Strategies	
Students with Disabilities	English Language Learners
- Consult student IEP - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word Consult with Case Managers and follow IEP	- Consult student ELL Plan - Assign a buddy, same language or English speaking - Allow errors in speaking - Rephrase questions, directions, and explanations - Allow extended time to answer questions - Accept participation at any level, even one word
Gifted \& Talented Students	Students at Risk
- Consult with G and T teacher - Provide extension activities - Make peer leaders - Build on students' intrinsic motivations - Consult with parents to accommodate students' interests in completing tasks at their level of engagement	- Consult with I \&RS as needed - Provide extended time to complete tasks - Consult with Guidance Counselors and follow I\&RS procedures/action plans - Consult with classroom teacher(s) for specific behavior interventions - Provide rewards as necessary
504 Students	Other:
- Consult 504 Plan - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word - Consult with Case Managers and follow 504	

Content Area: Math

Unit Title: Calendar Math

Grade Level(s): 4

Core Ideas: The purpose of this unit is for students to review and preview mathematical fourth grade topics. Students will be able to describe, analyze, compare, and classify two-dimensional and three-dimensional shapes. Students will deepen their understanding of properties of both two-dimensional and three-dimensional shapes. They will also be able to draw and identify lines and angles as well as classify shapes by their properties of lines and angles. Finally, students will solve problems involving measurement and convert units of measurement from a larger unit to a smaller unit.

Standards (Content and Technology)	
CPI\#:	Statement:
Performance Expectations (NJSLS)	
4.NF.C. 5	Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and $100 .{ }^{4}$ For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=34 / 100$.
4.NF.C. 6	Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as $62 / 100$; describe a length as 0.62 meters; locate 0.62 on a number line diagram.
4.MD.A. 1	Know relative sizes of measurement units within one system of units including km, m, cm. mm; kg, g; $\mathrm{lb}, \mathrm{oz} . ; 1, \mathrm{ml}$; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36), ...
4.MD.A. 2	Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
4.MD.C. 5	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement
4.MD.C.5a	An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles.
4.MD.C.5b	An angle that turns through n one-degree angles is said to have an angle measure of n degrees.
4.MD.C. 6	Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.
4.MD.C. 7	Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.
4.G.A. 1	Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
4.G.A. 2	Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.
4.G.A. 3	Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.
4.OA.C. 5	Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3 " and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.
SMP. 1	Make sense of problems and persevere in solving them.
SMP. 2	Reason abstractly and quantitatively.
SMP. 3	Construct viable arguments and critique the reasoning of others.

SMP. 4	Model with mathematics.	
SMP. 5	Use appropriate tools strategically.	
SMP. 6	Attend to precision.	
SMP. 7	Look for and make use of structure.	
SMP. 8	Look for and express regularity in repeated reasoning.	
Career Readiness (9.2) Life Literacies, and Key Skills (standard 9.1, 9.4)		
9.2.5.CAP.1	Evaluate personal likes and dislikes and identify careers that might be suited to personal likes.	
9.1.5.EG. 3	Explain the impact of the economic system on one's personal financial goals.	
9.1.5.FP.3	Analyze how spending choices and decision-making can result in positive or negative consequences.	
9.1.5.FP.1	Illustrate the impact of financial traits on financial decisions	
9.4.5.CT. 4	Apply critical thinking and problem-solving strategies to different types of problems such as personal, academic, community and global	
Technology Literacy/ Computer Science and Design Thinking (standard 8)		
8.2.5.ED. 2	Collaborate with peers to collect information, brainstorm to solve a problem, and evaluate all possible solutions to provide the best results with supporting sketches or models.	
8.2.5.ED. 6	Evaluate and test alternative solutions to a problem using the constraints and tradeoffs identified in the design process.	
Interdisciplinary Connection		
NJSLSA.SL1	Prepare for and participate effectively in a range of conversations and collaborations with diverse partners, building on others' ideas and expressing their own clearly and persuasively.	
NJSLSA.SL4	Present information, findings, and supporting evidence such that listeners can follow the line of reasoning and the organization, development, and style are appropriate to task, purpose, and audience.	
W.4.4	Produce clear and coherent writing in which the development and organization are appropriate to task, purpose, and audience.	
Cross-cultural Statements/Mandates (Amistad, Holocaust, LGBT/Disabilities, SEL, etc...)		
Amistad Mandate: References to this mandate are made by studying Benjamin Banneker, an African American who built America's first clock.		
Unit Essential Question(s): - How can you identify and draw points, lines, line segments, rays, and angles? - How can you identify and draw parallel lines and perpendicular lines? - How can you classify triangles by their sides and angles? - How can you sort and classify quadrilaterals? - How can you check if a shape has a line of symmetry? - How do you find lines of symmetry? - How can you sort and classify 3 dimensional shapes? - How can you use a protractor to measure and draw angles? - How can you use benchmarks to understand the relative sizes of measurement units? - How can you use models to compare customary units of length? - How can you use models to compare customary units of weight? - How can you use models to compare customary units of liquid capacity? - How can you use models to compare metric units of length? - How can you use models to compare metric units of mass?		Unit Enduring Understandings: - The students will identify attributes of 2 dimensional and 3 dimensional shapes in order to classify them. They will reason abstractly and quantitatively to measure angles, length, weight, and liquid capacity of both the customary and metric systems.

- How can you use models to compare metric units of liquid capacity?
- How can you use a model to compare units of time?
- How can you use the strategy draw a diagram to solve elapsed time problems?

Evidence of Learning

Formative Assessments: Entrance and exit slips, individual dry erase boards practice, small group work, homework collection, multiplication flashcards, participation, and teacher observation.
Summative/Benchmark Assessment(s): Assessments after every 2 months.
Alternative Assessments: Modified versions of formative and summative assessments and project-based assessments.

Resources/Materials:
 Key Vocabulary:

- Calendar math binder and calendars
- Every Day Counts Calendar Math
- SMART board
- document camera
- online resources (i.e. Reflex math, Xtra Math, IXL, Think Central)
- math manipulatives such as calendar pattern pieces, centimeter cubes, protractors, etc.
- September - parallel lines, intersecting lines, perpendicular lines, rays, line segments, multiples, fraction, decimal, all four coins
- October - two-dimensional shape, multiples, fraction, decimal, all four coins, double-line graph, customary units of measure
- November - quadrilaterals, multiples, fraction, decimal, all four coins, elapsed time, metric units of measure
- December - acute angle, obtuse angle, straight angle, right angle, multiples, fraction, decimal, all four coins, elapsed time, protractor
- January - acute/obtuse/right triangles, scalene/equilateral/isosceles triangles, fraction, decimal, all four coins, multiples, elapsed time, customary units of weight
- February - regular polygons, irregular polygons, multiples, fraction, decimal, all four coins, customary units of liquid capacity, elapsed time
- March-3-dimensional shapes, multiples, fraction, decimal, all four coins, metric units of liquid capacity, elapsed time
- April - symmetry, fraction, decimal, all four coins, multiples, metric units of weight, elapsed time

Suggested Pacing Guide			
Lesson Name/Topic	Student Learning Objective(s)	Suggested Tasks/Activities:	Day(s) to Complete
September	Students will be able to - Compare and analyze attributes of parallel, intersecting, and perpendicular lines, rays, and line segments - Identify multiples of 2 and 5 - Add multi-digit whole numbers - Identify fraction and equivalent decimal value	- Guided notes on vocabulary - Snakes and Ladders Games with lines, line segments, ray, point, parallel lines, intersecting lines - Identify multiples of 2 and 5 on a number line	1 month
October	Students will be able to - Compare and analyze attributes of two-dimensional shapes - Identify multiples of 3 - Add multi-digit whole numbers - Identify fraction and equivalent decimal value - Identify the time on a clock	- Guided notes on twodimensional shapes - Create double line graph with October temperatures - Brain Pop Video on Clock - Add a foot a day - Identify multiples of 3 on a number line	1 month

	- Create a double line graph - Convert between linear customary units of measurement		
November	Students will be able to - Compare and analyze attributes of quadrilaterals - Identify multiples of 4 - Add multi-digit whole numbers - Identify fraction and equivalent decimal value - Add decimals - Identify the time on a clock - Use knowledge of time to solve elapsed time problems - Convert between linear metric units of measurement	- Guided notes on quadrilaterals (hierarchy with reflexive markings) - Math Antics video on Quadrilaterals - Shopping Record with adding and subtracting decimals - Identify multiples of 4 on a number line - Use a number line to find elapsed time	1 month
December	Students will be able to - Identify and measure types of angles - Identify multiples of 6 - Add multi-digit whole numbers - Identify fraction and equivalent decimal value - Add decimals - Identify the time on a clock - Use knowledge of time to solve elapsed time problems	- Guided notes on angles - Angles sort - Guided \& independent practice drawing and measuring angles - Identify multiples of 6 on the number line - Add a cm per day	1 month
January	Students will be able to - Classify different types of triangles - Identify multiples of 7 - Add multi-digit whole numbers - Identify fraction and equivalent decimal value - Identify the time on a clock - Use knowledge of time to solve elapsed time problems - Convert between customary units of weight measurements	- Guided notes on triangles - Triangles google slides - Identify multiples of 7 on a number line - Add an oz per day to balance 1 pound	1 month
February	Students will be able to - Compare and analyze attributes of polygons - Identify multiples of 8 - Add multi-digit whole numbers - Identify fraction and equivalent decimal value - Identify the time on a clock - Use knowledge of time to solve elapsed time problems - Convert between customary units of liquid capacity measurements	- Guided notes on polygons - Math Antics Polygon video - Online digital task cards on polygons - Regular and irregular polygon sort - Polygon or Not a Polygon Game - Guided notes on liquid capacity - Add a cup per day to get to a gallon - Identify multiples of 8 on the number line	1 month
March	Students will be able to - Compare and analyze attributes of 3-dimensional shapes	- Guided notes on threedimensional shapes	1 month

	- Identify multiples of 9 - Add multi-digit whole numbers - Identify fraction and equivalent decimal value - Identify the time on a clock - Use knowledge of time to solve elapsed time problems - Convert between metric units of liquid capacity measurements	- Add 10 milliliters per day to get to a liter - Identify multiples of 9 on a number line	
April	Students will be able to - Compare and analyze attributes of triangular numbers - Add multi-digit whole numbers - Identify fraction and equivalent decimal value - Identify the time on a clock - Use knowledge of time to solve elapsed time problems - Convert between metric units of weight measurements - Identify lines of symmetry in a figure	- Shape Grid challenge - Shape pattern challenge - Add 100 grams a day to get to a kilogram	1 month

Teacher Notes: The pattern changes each month. The number line will wrap around the room. Each month introduces a new multiple for the number line as you continue to identify the previous multiples as well. For daily depositor, add money every day to predict if you will accumulate a million dollars by the end of the year.
September: Use December pattern pieces. For daily depositor, add the number of dollars equal to the date of the month. October: Use September pattern pieces. For daily depositor, add the number of dollars equal to twice the date of the month. Add a foot a day until you get to 30 feet. Graph and high and low temperatures each day to create a double line graph.
November: Use November pattern pieces. For daily depositor, add the number of dollars equal to ten times the date of the month. Create a flow chart of the types and characteristics of quadrilaterals. Start shopping record and elapsed time. Add 10 -centimeter cubes to a meter stick a day (tape cubes onto meter stick).
December: Use February pattern pieces. For daily depositor, add the number of dollars equal to twenty times the date of the month. Utilize angle packet to practice identifying and measuring angles. Continue shopping record and elapsed time. No measurement this month.
January: Use October pattern pieces. For daily depositor, add the number of dollars equal to one hundred times the date of the month. Continue elapsed time, but shopping record ends. Add 1 ounce a day until you reach 1 pound.
February: Use March pattern pieces. For daily depositor, add the number of dollars equal to one hundred times the date of the month. Continue elapsed time. Add 1 cup of water a day until you reach a gallon.
March: Use January pattern pieces. For daily depositor, add the number of dollars equal to one hundred times the date of the month. Continue elapsed time. Add 100 milliliters a day until you reach 2 liters.
April: Use April pattern pieces. For daily depositor, add the number of dollars equal to one thousand times the date of the month. Continue elapsed time. Give students 1 gram and 1 kilogram weight for students to compare the weights.

Additional Resources:

Calendar pocket chart, pattern cards, number line, symbols for each multiple, money for daily depositor, and clock.
September: December pattern pieces, heart shape for multiples of 2, and star shape for multiples of 5
October: September pattern pieces and triangle shape for multiples of 3. Foot long feet to hang up, clock, poster paper for double line graph.
November: November pattern pieces and square shape for multiples of 4. Shopping record sheet, centimeter cubes, and meter stick.
December: February pattern pieces, hexagon shape for multiples of 6 , and protractors.
January: October pattern pieces and days of the week symbol for multiples of 7 . Scale and ounce and pound weights. February: March pattern pieces and octagon shape for multiples of 8 . Measuring cup and empty gallon to add water to. March: January pattern pieces and domino shape for multiples of 9 . Graduated cylinder and a 2 liter soda bottle.
April: April pattern pieces.

Students with Disabilities	English Language Learners
- Consult student IEP - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word Consult with Case Managers and follow IEP	- Consult student ELL Plan - Assign a buddy, same language or English speaking - Allow errors in speaking - Rephrase questions, directions, and explanations - Allow extended time to answer questions - Accept participation at any level, even one word
Gifted \& Talented Students	Students at Risk
- Consult with G and T teacher - Provide extension activities - Make peer leaders - Build on students' intrinsic motivations - Consult with parents to accommodate students' interests in completing tasks at their level of engagement	- Consult with I \&RS as needed - Provide extended time to complete tasks - Consult with Guidance Counselors and follow I\&RS procedures/action plans - Consult with classroom teacher(s) for specific behavior interventions - Provide rewards as necessary
504 Students	Other:
- Consult 504 Plan - Allow errors - Rephrase questions, directions, and explanations - Allow a calculator when necessary - Allow extended time to answer questions, and permit drawing, as an explanation - Accept participation at any level, even one word - Consult with Case Managers and follow 504	

